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EXACT MIMICRY OF NONLINEAR
OSCILLATORY POTENTIAL MOTION:

NONUNIQUENESS OF ISODYNAMICAL TRACKS
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The relationship is investigated between a one-dimensional potential and a track in a
vertical plane along which a bead is constrained to slide freely under the influence of
gravity, such that the motion of the bead, projected onto the horizontal axis, is exactly the
same as (i.e., is isodynamical to) the one-dimensional oscillatory motion due to the
potential. For a given potential, the isodynamical track is specified in terms of a non-linear
first-order ordinary differential equation which depends on the amplitude, and whose
relevant solutions may be neither unique nor smooth. Several cases of quadratic and quartic
convex functions are solved numerically and displayed. For a given amplitude of
oscillation, only the track shape of minimum height is smooth at the origin. The track
shapes isodynamical to a double-well (Duffing oscillator) potential for the symmetrical
cross-well oscillations are all found to have a kink at the origin. Corresponding to a
V-shaped potential, there is a variety of track shapes including one of minimum height
which is smooth at the origin.
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1. INTRODUCTION

In a previous paper [1], the problem of finding a one-dimensional potential, isodynamical
to (i.e., producing exactly the same time dependence of displacement as) the horizontally
projected motion of a particle moving on a given vertically planar curved track under the
influence of gravity, was solved. In this paper, the converse problem is addressed: given
the potential, what is the shape of the isodynamical track?

These problems were motivated by the theory and experiments of Gottwald et al. [2],
who constructed a track with a quartic-minus-quadratic double-valley shape, upon which
moved a ‘‘cart’’. It was shown in [1] that the isodynamical potential to this for free
undamped large amplitude oscillations was actually a triple-well function.

Subsequent to the work of [2], Shaw and Haddow [3] were apparently the first to tackle
systematically the problem of choosing a track shape to achieve a desired oscillator
equation. However, they concentrated on the acceleration equation, which more naturally
incorporated the damping and driving forces which were crucial to the bulk of the work
of Gottwald et al. [2]. By contrast, the present paper is concerned strictly with the freely
moving situation as in the earlier part of [2], i.e., with a given one-dimensional potential
problem. Thus the procedure here is via the energy (first integral) equation: the resulting
simple relationship (equation (2.3b) in the following) seems to have been overlooked in
[3], but forms the basis of the present work.

Moveover, as stated in the Discussion in Reference [3], that work emphasised the use
of the arc length co-ordinate, with motion along the track having the desired oscillator
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equation. By contrast, the present paper specifies the motion projected onto the horizontal
Cartesian co-ordinate as the direct analogy of the given one-dimensional potential motion.
Thus, amongst the interesting examples detailed in Shaw and Haddow [3], those examples
common with this paper, viz., harmonic oscillator and Duffing double well potentials,
exhibit substantial differences in the appearances of the track shapes, not the least of which
are the non-uniqueness (even for given amplitude) and the possibility of a kink at the origin
in the results of this paper.

Unlike the first problem [1] which generated the isodynamical potential as an explicit
formula involving the given track shape function and its derivative, the problem of finding
the isodynamical track shape from a given potential will be shown to involve the solution
of a first order non-linear ordinary differential equation. This requires a numerical
approach, and moreover there may be non-unique solutions corresponding to a range of
track ‘‘heights’’ at fixed amplitude. Thus there may be a family of tracks isodynamical to
the potential and with each other.

With reference to [2], there does not appear to be any completely smooth track shape
curve which is isodynamical to a Duffing double-well potential for the symmetric ‘‘large
orbit’’ oscillations: a V like kink in the track shape is always found at the origin.

Examples are also given for tracks corresponding to various quadratic and quartic
potentials with positive curvature. Whilst there may be isodynamical track curves with a
kink at the origin, for a given potential of these types and given amplitude of oscillation
there is a unique isodynamical track curve, of minimum height, which has a continuous
derivative (zero slope) minimum, i.e., it is smooth at the origin.

Finally, non-linear tracks of various shapes isodynamical to V-shaped potential and
tracks are found. An Appendix deals with a simpler non-linear comparison differential
equation which exhibits non-unique solutions but possesses some known exact analytical
solutions which consequently help in the understanding of the more complicated
differential equations in the body of the paper.

2. PATHS CORRESPONDING TO A GIVEN POTENTIAL

One-dimensional oscillatory motion for a particle of mass m due to a potential v(x) is
described by (equation (2.2b) of [1])

ẋ2 = (2/m)[v(a)− v(x)], (2.1)

where an overdot denotes differentiation with respect to time, and ẋ=0 at x= a (the
amplitude: aq 0). For the horizontal co-ordinate X-motion of some other particle sliding
freely along a curved track with shape equation Y=Y(X) (geometric path in a vertical
plane) under the influence of gravity (constant g) acting vertically downwards, the
following equation was found ((2.4b) in [1]):

X� 2 =2g[Y(A)−Y(X)]/[1+ (Y'(X))2], (2.2)

where X� =0 at X=Aq 0, and a prime denotes differentiation with respect to X. (Upper
case co-ordinates refer to this constrained two-dimensional motion along the track.)

If the potential v(x) and amplitude a are given, then a curve Y(X) whose projected
motion X(t) onto the X-axis is isodynamical to x(t) must, by equations (2.1) and (2.2) with
A= a, satisfy the ordinary first order non-linear differential equation

(Y'(X))2 +1=mg[Y(a)−Y(X)]/[v(a)− v(X)]. (2.3a)
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ie.,

dY/dX=2[(Y(a)−Y(X))/(v̂(a)− v̂(X))−1]1/2, (2.3b)

where

v̂(x)= v(x)/(mg). (2.3c)

In general, equation (2.3b) is not first order separable, and has an (integrable) singularity
as X:a−0. Because of the form and non-linearity of this d.e., the solutions in general
depend on the amplitude a.

The special case of constant track slope Y'(X)= constant, i.e., v'(x)= constant, was
dealt with in the Appendix to Reference [1]. This provided a simple explicit example of
the possibility of non-uniqueness of Y(X) due to the projected motion property. There were
two distinct constant track slopes (if unequal to p/4) yielding motion isodynamical to a
constant slope potential. However, this was found under the ‘‘direct’’ framework of
Reference [1]. Solution of the ‘‘converse’’ problem (2.3), undertaken later in this paper
(section 5), shows that, corresponding to v'(x)= constant, there is a continuum of
isodynamical track shapes Y(X) which have negative, zero, or positive curvature depending
on their ‘‘height’’ at a specified amplitude.

It may be assumed in general that axes are chosen such that

v̂(0)=0=Y(0). (2.4)

The common case that v'(0)=0 does not necessarily imply that Y'(0)=0. If v(x) is
symmetrical about the origin then evidently so is Y(X), and equation (2.3b) need to be
solved only in 0EXE a. In that case, for a track solution which is smooth at the origin,
Y'(0)=0 by equation (2.3b). Then, via equation (2.4), a necessary and sufficient condition
for a track to be smooth at the origin (if a solution exists) is

Y(a)= v̂(a). (2.5)

In general, setting

Y	 (X)=Y(a)−Y(X) (2.6)

there results the differential equation

dY	 /dX=3[(Y	 −[v̂(a)− v̂(X)])/(v̂(a)− v̂(X))]1/2, (2.7)

which is to be solved subject (by equation (2.6)) to

Y	 (a)=0. (2.8)

Then, since Y(0)=0,

Y(a)=Y	 (0) (2.9)

and so the actual track shape is given by the curve

Y(X)=Y	 (0)−Y	 (X). (2.10)

For real solutions,

Y	 (X)eZ	 (X), (2.11a)

where, by equation (2.7),

Z	 (X)= v̂(a)− v̂(X). (2.11b)



. . . 522

Z	 (X) is not a solution, but by equation (2.7) Y	 '(X)=0 at points where Y	 (X)=Z	 (X). Thus
(using equation (2.4)) for real solutions Y	 (0)e v̂(a), i.e., Y(a)e v̂(a), and for a track
solution Y(X) smooth at X=0, (by (2.5) and (2.9))

Y	 (0)= v̂(a). (2.12)

The first order ODE (2.7) may present difficulties in its numerical solution. Even if the
aforementioned integrable singularity can be removed by suitable analytical change of
independent variable, the right side of equation (2.7) may not satisfy the Lipschitz
condition at X= a: (1/1Y	 ) (R.S) may:a as Y	 :0 (e.g., see [4], p. 276). Thus its solution
subject to the single condition (2.8) at X= a may not be unique, and there may
correspondingly be different physical track solutions through the origin with a range of
acceptable values of Y(a). This is actually not surprising, since it is the projected X-motion
which is being considered here, so different track curves might still yield the same X-motion
and hence correspond to the same v(x). The class of solutions to equations (2.7) with (2.8)
would then lead via equation (2.10) to curves Y(X) which are also isodynamical with each
other. However, as indicated by equation (2.5), only a track solution with Y(a)= v̂(a), i.e.,
its minimum value for reality at X= a, would be smooth at the origin X=0.

3. QUADRATIC EXAMPLES

3.1.   

For the quadratic (one-dimensional harmonic oscillator) potential

v(x)= 1
2kx2, (3.1)

the projected X-motion isodynamical track curves Y(X) are given for Xe 0 by equation
(2.10), with Y	 (X) satisfying the ODE

dY	 /dX=−$((2mg/k)Y	 −(a2 −X2))
(a2 −X2) %

1/2

, (3.2)

with Y	 (a)=0, equation (2.8). In this case the differential equation for Y	 is solved with
the negative square root (c.f. equation (2.10)) giving positive slope for Y(X) for 0QXE a,
the curve for negative X being completed by symmetry. This problem corresponds to
finding those tracks with motion due to gravity whose X-projections obey simple harmonic
motion.

Upon making the standard trigonometric transformation

X= a cos u (3.3)

to remove the integrable singularity in equation (3.2), there results

dY	 /du=[(2mg/k)Y	 − a2 sin2 u]1/2, (3.4)

subject to

Y	 (u=0)0Y	 (X= a)=0 (3.5)

and then by equation (2.9)

Y(X= a)=Y	 (X=0)0Y	 (u= p/2). (3.6)

Since equation (3.4) may not have a unique solution through the point (u=0, Y	 =0),
as mentioned above for X= a, it cannot be integrated forwards from u=0 using equation
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(3.5). Instead, it must be integrated backwards from the other endpoint u= p/2, for
selected values of Y	 (u= p/2), to find which range of ‘‘heights’’ Y	 (u= p/2)0Y(X= a)
lead to Y	 (u=0)=0.

Merely from equation (2.6) with equation (3.3),

dY	 /du= a sin u dY/dX (3.7)

so dY	 /du and dY/dX have the same sign for Xq 0. Then (provided dY/dX is finite)
dY	 /du=u=0 =0. Furthermore,

dY	 /du=u= p/2 = a dY/dX=X=0. (3.8)

Thus for a track curve Y(X) which is smooth at the origin, i.e., with Y'(0)=0, solutions
to equation (3.4) would be required with

dY	 /du=u= p/2 =0. (3.9)

Consequently, by equation (3.4), or more generally by equation (2.12), the criterion for
a completely smooth curve Y(X) is

Y	 (X=0)0 Y	 (u= p/2)0Y(X= a)= v̂(a) (3.10)

with value 1
2ka2 for this quadratic potential, provided that equation (3.5) is also satisfied.

Larger values of Y	 (u= p/2) may still yield equation (3.5), but then equation (3.9) is no
longer satisfied, so the corresponding isodynamical paths Y(X) would, by equation (3.8),
have a kink at the origin when extended by symmetry (c.f. equation (2.3b)) to −a EXE 0.

For reality of Y	 (u), from equation (3.4) the solutions must satisfy Y	 (u)eZ	 (u), where
Z	 (u)= [ka2/(2mg)] sin2 u here (consistent with equation (2.11b)). The curve Z	 (u), provides
a lower bound to solution values, and bounds a direction field plot which may be useful
in obtaining a qualitative picture of the nature of the relevant solution curves.

With a=1 (or non-dimensionalising Y	 with respect to a and scaling up k by a
factor a), equation (3.4) behaves for small u like

dY	 /du1 [(2mg/k)Y	 − u2]1/2. (3.11)

Thus a behaviour similar to the comparison d.e. dealt with in the Appendix may be
expected. With constants a=1 and (2mg/k) =5 chosen in the full equation (3.4), there
must be at least be a range of solutions through Y	 (u=0)=0 between (1

4)u
2 and u2 for

u small (see equation (A.3)). Backwards numerical integration of equation (3.4)
yields a range for Y	 (u= p/2) between 0·2 and about 2·6 such that Y	 (u=0)=0. The
lower limit Y(1)[MIN] = 0·2 is just equation (3.10), i.e., v̂(1) in this case, because Y	 e 1

5 sin2 u

in equation (3.4) for real derivative, and Y(1)[MIN] corresponds to the smooth solution for
Y(X) in −1EXE 1.

Points of inflexion, with d2Y	 /du2 =0, lie on the curve Y	 I = 1
5 sin2 u+ 1

125 sin2 2u which
itself has a point of inflexion at about u=0·23p. Thus, for instance, the solution Y	 (u) with
Y	 (p/2) =0·3 decreases (concave up) until it crosses the curve Y	 I(u) from above and
becomes concave down but recrosses Y	 I for smaller u and finally tends towards u=0 as
a concave up curve. On the other hand, solutions Y	 (u) with Y	 (p/2) near the upper end
of the range are concave up, right down to the origin.

Thus the range Y(a) of possible heights of the track at amplitude a=1 (for (2mg/k)=5
in equation (3.4)) of the oscillatory motion under gravity of isodynamical paths is between
0·2 and about 2·6, and the X projected motion must, by construction, be standard simple
harmonic as resulting from equation (3.1).

The resulting actual track shape Y(X) is given by equation (2.10) with equation (3.3).
For height Y(1)=2·5, the track, for X decreasing from 1, appears concave down, all the
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Figure 1. Track shape Y(X) (solid curve) isodynamical to quadratic (harmonic oscillator) potential v(x)
(normalized with respect to mg) (dashed curve). See equations (3.4) (with (3.3), (2.10)) and (3.1) with a=1 and
(2mg/k)=5. The curves are extended to negative X= x by symmetry. See text, sub-section 3.1, for discussion.
(a) Y(1)=2·5; (b) Y(1)=0·3; (c) Y(1)=0·204; (d) Y(1)=0·20001.

way to the origin: see Figure 1a; (these figures were prepared using Mathcad Plus 5.0).
For height Y(1)=0·3, as X decreases the track curve Y(X) is concave up until about
X=0·3 and then is concave down, always being above v̂(X)=0·2X2; (see Figure 1b). It
is therefore still quite different in shape from its isodynamical parabolic potential (3.1).
As Y(1) approaches its lower value 0·2, the curve Y(X) crosses v̂(X) just below X=1 and
remains below it until X gets very small; the portion of the curve which is concave down
occupies a smaller and smaller region near the origin. (See Figure 1c for Y(1)=0·204).
Thus Y(X) tends to a concave up curve with zero slope at the origin as Y(1) approaches
Y(1)[MIN] = v̂(1)=0·2. In Figure 1d, which has Y(1)=0·20001, there is still a small region
near the origin in which Y is concave down, but it is not visible on the scale of the figure.
(It did not seem feasible to integrate equation (3.4) numerically from Y	 (u= p/2) exactly
equal to v̂(1)=0·2, because the numerical routine used gave small negative values inside
the square root even for very small step size.)

This smooth limiting solution track curve, with Y(1)= v̂(1)=0·2 here and
Y'(0)= v̂'(0)=0, is not, it is emphasized, of the same shape as the potential curve (c.f.
Figure 1d). This can easily be proved for general non-linear curves as follows. From
equation (2.3a), if Y(X)=Kv(X)/(mg), where K is a constant, then (Y'(X))2 =K−1, so
Y' is constant. This is just a linear case for Y(X) (considered in the Appendix), or the
irrelevant constant case if K=1. Similar numerical behaviour was found (with a=1) for
(2mg/k)=4, for Y(1) between 0·25= v̂(1) and about 1·6.

These tracks are symmetric about X=0, and for fixed mg/k the unique solution Y(X)
with continuous (zero) slope at the origin, viz., having Y(1)=Y(1)[MIN] = v̂(1), is a smooth
track shape sustaining oscillatory motion of a sliding bead; a track-and-cart system such
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as in [2] could be used. For solutions with Y(1)qY(1)[MIN] there is a kink at X=0, so the
motion would be that of a ‘‘point’’ bead: there could then be difficulties in making an
actual mechanical model which would exhibit full oscillatory motion. Nevertheless, the
motion of a bead along these tracks from X=1 to X=0, projected onto the X-axis, would
be exactly the same as the one-dimensional motion due to the harmonic oscillator potential
(3.1), from x=1 to x=0. The tracks for fixed mg/k (and fixed a=1) in the family with
allowable heights Y(1) are isodynamical to the potential (3.1) and with each other.

3.2.      

In sub-section 3.1.1 of Reference [1], the parabolic track shape

Y(X)= (1/2)KX2 (Kq 0) (3.12)

was isodynamical to the (explicit, unique) potential

v̂(x)= (1/2)K(1+K2A2)x2/[1+K2x2] (3.13)

for oscillation amplitude A. In view of the non-uniqueness of the inverse correspondence
as discussed above, one may now start with potential v(x) given by equation (3.13) with
A= a and seek those track curves Y(X) which are isodynamical with it; Y(X)= 1

2KX2 will
be one known exact solution.

The differential equation (2.7) is in this case

dY	 /dX=−[(2(1+K2X2)Y	 −K(a2 −X2))/K(a2 −X2)]1/2. (3.14)

With a=1, this becomes, after transformation X=cos u,

dY	 /du=+[(2/K)(1+K2 cos2 u)Y	 −sin2 u]1/2, (3.15a)

subject to

Y	 (u=0)=0. (3.15b)

A known exact solution is Y	 = 1
2K sin2 u with Y	 (u= p/2)= 1

2K, giving the original
parabolic path.

Near u=0, (3.15a) behaves like

dY	 /du1 [(2/K)(1+K2)Y	 − u2]1/2, (3.16)

which according to the Appendix has exact parabolic solutions for (2/K)(1+K2)e 4, i.e.,
(K−1)2 e 0, i.e., any positive K.

If K=2, Y	 =sin2 u is the known exact solution, with Y	 (u= p/2)=1, to the differential
equation (3.15) which now reads:

dY	 /du=[(1+4 cos2 u)Y	 −sin2 u]1/2. (3.17)

For real solutions, Y	 eZ	 (u)= sin2 u/(1+4 cos2 u), so Y	 (p/2)e 1. In fact, although
it has not been shown analytically, backwards numerical integration indicates that
Y	 (u= p/2)=1 is the only value yielding Y	 (u=0)=0. Thus Y=X2 is the only track
(with a=1) having its X motion.

Similar results were found for K=4, with Y=2X2. Then the differential equations is

dY	 /du=[(1
2)(1+16 cos2 u)Y	 −sin2 u]1/2. (3.18)

Y	 =2 sin2 u is the known exact solution, with Y	 (u= p/2)=2, and this appears to be the
only solution.
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If K=1, Y	 = 1
2 sin2 u is the known exact solution, with Y	 (p/2)=0·5, to the differential

equation (3.15)

dY	 /du=[2(1+cos2 u)Y	 −sin2 u]1/2. (3.19)

For real solutions, Y	 eZ	 (u)= sin2 u/[2(1+cos2 u)], so Y	 (p/2)e 0·5. Backwards
integration gives a range of Y	 (u= p/2), yielding Y	 (0)=0, from 0·5 to about 0·7. Thus
Y= 1

2X
2 is isodynamical with a continuum of other track shapes with a=1 and

0·5EY(1)E 0·7. For example, with Y	 (p/2)=Y(1)=0·7, the track shape Y(X) is depicted
in Figure 2 (together with its isodynamical parabola Y= 1

2X
2). It has positive slope at the

origin, and so again refers, for oscillatory motion, to a point bead; but the motion of a
macroscopic bead from X=1 to X=0, projected onto the X-axis, would still be the same
as for the ‘‘parent’’ parabola Y(X)= 1

2X
2, which is the unique smooth solution with

continuous (zero) slope at the origin.

4. QUARTIC POTENTIAL EXAMPLES

4.1.  

4.1.1. Duffing oscillator—hard spring
For the potential

v(x)= k4x4 + k2x2, ki q 0, (4.1)

the differential equation (2.7) is again subjected to the co-ordinate transformation (3.3) and
then reads

dY	 /du=[gY	 /(a2(1+cos2 u)+ k)− a2 sin2 u]1/2, (4.2)

where

k= k2/k4, g=mg/k4. (4.3a, b)

A numerical example is described with a=1, k=1/2, g=10, and attention is now
restricted to solutions near the smooth track case Y	 (u= p/2)=Y(X=1)= v̂(1)
= 3/20=0·15. For Y	 (u= p/2)=0·2, it was evident that equation (3.9) for Y	 was not
satisfied, and a track shape Y akin to Figure 1b was found. For Y	 (u= p/
2)=Y(X=1)=0·1501, a situation similar to Figure 1d was found. The eventual smooth
track shape Y(X) with Y(X=1)=0·15 is evidently different from v̂(X), being mainly
below it, whilst the conditions (3.10) and (2.4) are satisfied.

4.1.2. Pure quartic potential (cubic oscillator)
With k2 =0 in Equation (4.1), so k=0, and choosing a numerical example with a=1,

g=8, the differential equation is

dY	 /du=[8Y	 /(1+cos2 u)− sin2 u]1/2 (4.4)

with v̂(1)=1/8=0·125. The slope of the lower bounding curve Z	 (u)= (1/8) sin2 u

(1+cos2 u) is proportional to sin u cos3 u, which is positive but very small near u= p/2.
Thus it was difficult to integrate numerically below about Y	 (u= p/2)=0·13; a situation
for Y similar to Figure 1c was found.
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4.2.  - 

Of particular interest in this paper, in view of the spirit of Reference [2], is the question:
what track shapes are actually isodynamical to a double-well Duffing potential? For

v(x)= k4x4 − k2x2, ki q 0 (4.5)

Equation (4.2.) now becomes

dY	 /du=[gY	 /(a2(1+cos2 u)− k)− a2 sin2 u]1/2 (4.6)

with k and g still as in equations (4.3a, b), so

v̂(x)= (1/g)(x4 − kx2). (4.7)

For the interesting case of symmetric (‘‘large’’) oscillations across both wells (‘‘large
orbits’’), by equation (4.7) the amplitude satisfies

aqzk (4.8)

and the integrand in (4.6) is then in fact not singular. The curve below which solutions
are not real is

Z	 (u)= (a2/g) sin2 u[a2(1+cos2 u)− k] (4.9)

so

Y	 (u= p/2)eZ	 (u= p/2)= (a2/g)(a2 − k)= v̂(x= a). (4.10)

dZ	 /du is zero at u=0 and p/2 and at u= p/2− a/2, a=arcos (1− k/a2). Unlike previous
cases, Z	 (u) decreases between u= u3 0 p/2− a/2 and u= p/2, where

cos (2u3)=−(1− k/a2). (4.11)

Thus it is not possible to have a smooth decreasing solution curve Y	 (u) satisfying both
Y	 (u= p/2)=Z	 (u= p/2)= v̂(X= a) and Y	 (u=0)=0, so there is no corresponding
smooth track shape Y(X). This is because such a solution to equation (4.6) has zero slope
at u= p/2, and so becomes imaginary as soon as u becomes less than p/2, since Z	 (u)
initially increases as u decreases from p/2.

There is still the possibility that there is a solution to the differential equation with
negative sign outside the square root in equation (4.6) (c.f. (2.3b)), for some region near
u= p/2. (After all, if an attempt was made to recover a track by trying to solve the
differential equation (2.3) using the complicated isodynamical potential (3.16) of Reference
[1] corresponding to the hill-and-two-valleys track (3.15) of Reference [1], it was evident
in Figure 2 of Reference [1], that dY/dX was negative in a region for that problem.)

Indeed, from the general result (3.7) which follows from the dependent variable
redefinition (2.16) and the independent co-ordinate transformation (3.3), one obtains

d2Y	 /du2=u= p/2 =−a2 d2Y/dX2=X=0. (4.12)

This shows that if Y	 (u) is concave up at u= p/2 then Y(X) must be concave down at
X=0. This was borne out by Figure 2 of Reference [1] for the problem there.

In the present example with equation (4.5), there seems to be the possibility of a solution
Y	 (u) which starts at u= p/2, Y	 =Z	 (u= p/2), increases as u decreases (negative slope), and
then bends over to tend towards the origin (positive slope). For a smooth curve, the
transition from negative to positive sign outside the square root in equation (4.6) can only
occur when dY	 /du=0, and hence only for a value of u and Y	 such that Y	 (u)=Z	 (u) (see
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Figure 2. Track shape Y(X) with Y(1)=0·7 (upper curve) isodynamical to parabolic track (lower curve)
f(X)=X2/2, for motion X(t). See equations (3.19) (with (3.3), (2.10)) and (3.12). The curves are extended to
negative X by symmetry. These are both isodynamical to the potential (3.13), with A=1 and K=1. (c.f. Figure
1 in Reference [1].)

equation (4.9)). Furthermore, to maintain the reality of the solution, this could only occur
at the maximum point of Z	 (u), i.e., at u= u3 given by equation (4.11), where

Z	 (u3)= (1/g)(a2 − k/2)2. (4.13)

However, some mathematical working shows that for this problem

d2Y	 /du2[at u= u3, as Y	 :Z	 ]= (g/2)/(a2 − k/2). (4.14)

By equation (4.8), this is positive (Y	 (u) is concave up). Thus it is not possible for a smooth
solution Y	 (u) such as that just described to osculate, concave down, over the ‘‘hump’’ in
Z	 (u) and decrease to the origin. Similar reasoning shows that a curve for Y	 (u) which is
smooth from u= p/2 to u=0 cannot have negative slope anywhere in that domain.

For a numerical example, a=1, k=1/2, g=6 were chosen. A range of Y(1) (such that

Figure 3. Track shape Y(X) (solid curve) isodynamical to double-well potential v(x) (normalized with respect
to mg) (dashed curve). See equations (4.6) (with (3.3), (2.10)) and (4.5), (4·7) (with 4.3a, b), with a=1, g=6,
k=1/2, and Y(1) =0·84. The curves are extended to negative X= x by symmetry.
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Y(0)=0) from about 0·84 to 3·3 was found. The lowest value is still well above
v̂(1)=1/(2g)=1/12=0·0833, as explained by the discussion above. For Y(1)=3, the
track curve looks much like Figure 1a. For Y(1)=0·84, the track curve is shown in Figure
3. The whole (symmetric) curves from −1 to +1 thus have a kink at the origin. A similar
behaviour was found for g=8.

There is therefore (perhaps unfortunately in view of [2]) no completely smooth shape
of track isodynamical to a Duffing-type double-well potential as regards symmetric
(cross-well) oscillations.

5. LINEAR POTENTIAL

These investigations are concluded by reconsidering the simple case of a linear
potential/straight-line track, in particular a V-shape. In the case that v'(x)= constant, then
v'(0)$ 0. With

v(x)= kx, v̂(x)= lx, l= k/(mg), (5.1a, 1b, 1c)

equation (2.7) reads

dY	 /dX=−[(Y	 − l(a−X))/(l(a−X))]1/2. (5.2)

This is known to have solutions (see [1])

Y	 =K(a−X), Y(X)=KX, K=K2 =[12 (1−4l2)1/2]/(2l). (5.3a, 3b, 3c)

To find more general solutions, let

X= a− h2/2; h=[2(a−X)]1/2 (5.4)

so equation (5.2) becomes

dY	 /dh=[(2/l)Y	 − h2]1/2 (5.5a)

with (c.f. equation (2.8))

Y	 (h=0)=0. (5.5b)

By inspection, this has exact parabolic solutions

Y	 (h)= {(2/l)2 [(4/l2)−16]1/2}h2/8 (5.6)

corresponding to the linear solutions (5.3) for Y(X). More generally, for Y	 (h) satisfying
the non-linear differential equation (5.5) (see equation (2.10))

Y(X)=Y	 (z(2a))−Y	 (h) (5.7a)

with (see equation (2.9))

Y(X= a)=Y	 (h=z(2a)). (5.7b)

Equation (5.5) for Y	 (h) is actually exactly of the form of the ‘‘comparison’’ differential
equation (A1) for y(x) of the Appendix, with

a=2/l. (5.8)

Thus the behaviour of its non-analytical continuum of non-unique solutions is similarly
understood, and it only remains, after computing solutions to equation (5.5a) satisfying
(5.5b), to depict corresponding track shape solutions Y(X) via equations (5.7).

The case a=5 (l=0·4) is chosen as a typical example, with exact solutions Y	 = h2 and
Y	 = h2/4, i.e., track functions Y=2X and Y=X/2. With amplitude a=A=1, the
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Figure 4. Track shape Y(X) (solid curve) isodynamical to the linear potential v̂(x)=0·4x See equations (5.5)
(with (5.4), (5.7)) and (5.1) with a=1 and l=2/5: (a) Y(1)=1; (b) Y(1)=0.401. The isodynamical
exact solutions Y1=2X (Y(1)=2) and Y2=X/2 (Y(1)=0·5) are also shown (upper light and lower
bold dashed straight lines respectively). For a V-shaped track, the curves are extended to negative X= x by
symmetry.

‘‘heights’’ Y(X=1)=Y	 (h=z2) range from the maximum solution satisfying equation
(5.5b), which is known from the Appendix to be (z2)2 =2, down to the minimum for
reality of equation (5.5a), viz., (z2)2/a=0·4.

For Y(X=1)=2, the solution is exact: the straight line Y=2X; for Y(X=1)=0·5,
the solution is the exact straight line Y=X/2. For Y(X=1) between 2 and 0·5, the
solutions Y(X) are concave-down curves. For Y(X=1) between 0·5 and 0·4, the solutions
are concave-up curves. Figure 4a shows the track shape Y(X) for Y(X=1)=1, together
with its two isodynamical straight line tracks as described above. Figure 4b shows the track
shape for Y(X=1)=0·401. The track solution satisfying equation (2.5), i.e., here the
limiting curve as Y(1):v̂(1)= l=0·4, is smooth at the origin, with Y'(0)=0, and looks
like Figure 4b on the scale of that figure.

For a V-shaped potential, therefore, the isodynamical track shape curves are
symmetrical but (except for two special ‘‘heights’’) are not in general of a simple V-shape.
There is even a smooth U-shaped track, isodynamical to the V-shaped track, upon which
a macroscopic ‘‘cart’’ (c.f. [2]) could move.

6. CONCLUSION

One-dimensional potential motion may in many cases be realized mechanically by
projection, onto the horizontal axis, of motion due to gravity on an isodynamical track
shape which depends on the amplitude and is not in general of the same functional form
and may not be unique. In Reference [1], for the direct problem, for a given track function,
the potential was explicitly and uniquely specified. In particular, corresponding to a given
double-well shaped track (c.f. [2]) (with motion under gravity, projected onto the
horizontal axis), the (scaled) potential for large amplitude oscillations had a triple-well
form, with minima at the turning points of the track curve.

For the converse problem dealt with here, for given parabolic and positive curvature
quartic potentials, there is a continuum of isodynamical track shapes with a kink at the
origin. Only the track shape with minimum ‘‘height’’ is smooth at the origin (but of
different shape from the corresponding potential). For a given Duffing-type double-well
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potential, corresponding to the ‘‘large orbits’’ there are no completely smooth track
shapes—they are something like a florid V or wings shape.

For an ordinary V-shaped potential, the isodynamical track shapes include two V-shapes
but otherwise consist of a continuum of symmetrical curves not of a simple V-shape; the
shape with minimum ‘‘height’’ is in fact smooth at the origin.

Thus the isodynamical mechanical analogues of some potentials have a kinked track
shape and so for oscillations correspond to the concept of only a point bead sliding along
a wire. In other cases, a unique smooth track shape may exist which may therefore be
amenable to construction and experimentation.
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APPENDIX: A COMPARISON EQUATION

The technique of backwards-integration to find the range of ‘‘heights’’ of solutions to
a differential equation with non-unique solutions through the origin, as used in sections
3 and 4 above, may be illustrated by a related but simpler ‘‘comparison’’ equation for
which some exact analytical solutions are known. Consider the ordinary non-linear
differential equation (whose variables are unrelated to those in the body of this paper)

dy/dx=[ay− x2]1/2, (A1)

with

y(0)=0. (A2)

Inspection of (A1) suggests seeking solutions of the parabolic form y= bx2. Then if
a=4 an exact solution is y= 1

2x
2; and if aq 4 there are two known real exact solutions

to (A1, 2), viz.,

yi = bix2, b1, 2 = [a3 (a2 −16)1/2]/8. (A3a, b)

By Osgood’s theorem ([5], p. 67) there are also solutions satisfying (A2) through any point
between the curves b1x2 and b2x2. This does not preclude there being other solutions outside
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this region but still satisfying (A2). Because solutions are unique for xy$ 0, none of this
continuum of solutions cross or touch for x, yq 0.

An advantage of having these explicit solutions (A3) available is that they assist in
understanding the solutions to the more complicated differential equations in the main part
of this paper. In addition, the numerical technique of backward integration can be checked
down to small values of x, starting with y(1) in [b1, b2] which is known to satisfy all the
conditions.

For a=4, the solution y= 1
2x

2 to equations (A1, 2) has y(1)=0·5. Backward
integration of equation (A1) yields a range of y(1) (such that equation (A2) is satisfied)
from 0·25 to about 0·53. (It is actually quite difficult to decide when (A2) is satisfied because
of the fine scale needed near x=0, where the term inside the square root on the right side
of (A1) may computationally become negative.) The lower limit of 0·25 for y(1) simply
corresponds to the requirement that dy/dx in equation (A1) is real, i.e., ye 1

4x
2. As x

increases, solutions y(x) hit the curve y= 1
4x

2 from the left with zero slope and then stop.
Points of inflexion (y0=0) lie on the curve yI =(5/16)x2. For solutions with
1/4Q y(1)Q 5/16, as x decreases below 1 the solution curves are concave down until they
cross yI and then become concave up, decreasing to the origin. Solutions with y(1)q 5/16
are concave up, and decrease to the origin at least for y(1)E 1

2. Inspection of plots of the
gradient field confirm these considerations, and may also in general assist in determining
the range of y(1).

For a=5, the two explicit solutions (A3) are y1 = 1
4x

2 and y2 = x2 with y(1)=0·25 and
1 respectively. Backward integration of (A1) yields a range of possible values of y(1)
between 0·20 and 1·0. This situation may again be described in some detail. For reality
of solutions, ye (1/5)x2, y(1)e 1/5 corresponding to the lower range value 0·2. Moreover,
solution curves hit the parabola yR =(1/5)x2 with zero slope. Points of inflexion of
solutions, with y0=0, lie on the parabola yI =(29/125)x2, which lies between the smaller
known exact solution y1 and the lower bounding parabola yR . Solutions when below the
parabola yI have negative curvature (concave down) and when above have positive
curvature (concave up). Thus (as x decreases) any solution starting on yR =(1/5)x2 (with
zero slope) is concave down until it crosses the parabola yI after which it is concave up
and tends towards the origin. This is the case for solutions with 1/5E y(1)E 29/125 (which
have y'(1)e 0). Solutions to equation (A1) with y(1)e 29/125=0·232 are concave up and
therefore remain so as x decreases.

Solutions lying between yI =(29/125)x2 and y2 = x2 (including y1 = 1
4x

2) are therefore
concave up and decrease to the origin as x:0. (They do not cross each other because the
solution of the d.e. (A1) through a point with xy$ 0 is unique.) Solutions to (A1) with
y(1)q 1= y2(1) appear to curve away from the exact solution y2(x)= x2 and cross the
y-axis at positive values, so they do not satisfy (A2), i.e., they have y(0)$ 0.


